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I 

SOME EXPERIMENTAL RESULTS CONCERNING THE 
ERROR PROPAGATION I N  RUNGE-KUTTA TYPE 

INTEGRATION FORMULAS 

INTRODUCTION 

i. In two ear l ier  reports [ 13 , [2]  , the author derived RUNGE-KUTTA 
formulas up to the eighth order .  Each of these formulas, in fact, 
represented a pair  of RUNGE-KUTTA formulas. By adding one o r  two 
more evaluations of the differential equation and changing the weight 
factors, the nth-order formula ( n  8) was extended to a (n+i )  st-order 
formula. 

2. In these ear l ier  reports, the (n-t I) st-order formula was used a s  a step- 
size control for the nth-order formula since the (n+ i) st-order formula 
covers correctly the leading term of the local truncation e r r o r  of the 
nth-order formula. 

3 .  In this report we shall deal with the global e r ro r  propagation of our 
RUNGE-KUTTA formulas.. The problem will be approached in two 
different ways. In Section I, we will present the more conventional 
approach using the integrated differential equation for the e r ro r  propaga- 
tion. In Section 11, two-sided ( o r  bilateral) RUNGE-KUTTA formulas 
a r e  derived. Such two-sided RUNGE -KUTTA formulas a r e  convenient 
Tor the investigation of the e r r o r  propagation of extensive systems of 
differential equations, since no partial derivatives of the differential 
equations a r e  required for this type of formulas. 

4. For both approaches the knowledge of the leading te rm of the local 
truncation e r ro r  is essential. In the first approach, the local truncation 
e r r o r  enters directly the equation for the e r r o r  propagation. For the 
second approach, our RUNGE-KUTTA formulas can be easily converted 
into two-sided formulas by making use of the leading te rm of the local 
truncation e r r o r  of our formulas. 

5. A s  described in Section I and Section 11, both approaches for the e r r o r  
propagation can serve to obtain realistic upper and lower bounds for the 
e r ro r ,  along with the integration of the differential equations of the 
problem. In general, the true e r r o r  will lie somewhere between these 
bounds. However, certain conditions have to be satisfied to guarantee 



that the true e r r o r  is always located between these bounds. If such 
conditions can be formulated, they probably would be  of little practical 
help because they would be  too complicated and would involve unknown 
partial derivatives. This report will not be concerned with the formula- 
tion of such conditions. Section 111, however, will present some nontrivial 
examples to show that our procedures a r e  capable of yielding reasonably 
close e r r o r  bounds for the solutions of such problems. 

SECTION 1 .  THE ERROR EQUATIONS, BASED ON ONE 
INTEGRATION PROCEDURE PER 1NTEGRATION STEP 

6.  For simplicity, let us consider a system of only two first-order 
differential equations : 

dx 
-. dt = f ( t ,  x, y) 

The numerical integration of ( I) is performed by a RUNGE-KUTTA 
formula. For the first equation ( I), such a RUNGE-KUTTA formula 
would read 

and 

The coefficients a i ,a2 ,  . . . ; Pi0,Pzo,P2i, . . . ; and C O , C ~ , C ~ ,  
a r e  known numerical constants of the RUNGE-KUTTA formula, and 
h(= dt) stands for the integration stepsize. 

2 



F i 

A corresponding RUNGE -KUTTA formula holds for the second differential 
equation (I). 

7. We now assume that the values x,, and yo at the beginning t = to of 
our integration step are affected by e r r o r s  (€XI0  and (Ey)o’F and we 

like to study the propagation of these e r r o r s  through the current integra- 
tion step. 

Including these e r r o r s  in (2)  and ( 3 ) ,  we obtain 
N 

f = f t  x +  E 
0 [ 0’ 0 ( XIO’ yo + (EY)OI 

N 

N 

N N N 

X + E  = X  + ( E )  + h ( c f  + c f  + c f  + . . .  x 0 x o  0 0  11 2 2  

If -ye expend (4)  in  TAYLOR ser ies  and car ry  only linear terms in 
( cX)  and (cy) , the following expressions result: 

} (4) 

( 5 )  

I. We disregard e r ro r s  in to since such e r ro r s  can be avoided by a proper 
selection of the time step. For a binary electronic computer, time steps 
that a r e  a (positive o r  negative) power of 2 should be used. 

3 



N 

fo = fo  + ( ~ ) o o o  

N 

N 

+ ( 3 2 0 0  { (€y) 0 + [fi20(;0-g0) + P 2 i ( b % j ) ]  

The three subscripts uOO( u = 0 ,  i, 2, . . . ) in ( 6 )  a r e  supposed to 
indicate that the expression in question is to at t + a u h ,  xo,yo 0 
( a. = 0) . For example stands for a t  to+ a2h; q, yo. 

Introducing ( 6 )  into (5)  yields an expression for the e r r o r  E 

of the integration step. If, in this expression, we restrict ourselves to 
linear te rms  in h, we may drop in ( 6 )  all terms that are multiplied with 

at the end 
X 

h and may replace (f-)uoo by (z),ooo and ("> ay uoo by (") ay ooo since 

\ 

(") ay uoo = (3) ay ooo + (-)ooo a$ + . . . 

4 



Because of the equation of condition 

for the RUNGE-KUTTA coefficients, the expression for E and the 

corresponding expression for  E then read 
X 

Y 

E X = (Ex)o+ [ ($0 fx)o + (%)o tJO] - 

E Y = t y ) o  + [ ($0 6X)O + ($0 (;)o] * 

(9) 

In (9 ) ,  we have replaced the triple subscript 000 of the partial deriva- 
tives by just one subscript 0 .  

Equation ( 9) represents the propagation of the e r r o r  

through the current integration step. To obtain the total e r ro r ,  we still 
have to add to the right-hand sides of (9) the local truncation and local 
round-off e r r o r  committed during the current integration step. 

Dencting these e r r o r s  by T , T and R , R respectively, we 

obtain instead of ( 9 )  in vector form 
X Y  x Y’ 

In an obvious way, equation ( 10) can be extended to systems of more 
than two first-order differential equations. 

8. To handle these well-known equations ( 10) for the e r r o r  propagation, the 

partial derivatives - af - af .% have to be computed along with a x )  a y ’  a x ’  ay 
the integration of the differential equations. Furthermore, certain 
assumptions have to be made for  the local truncation e r r o r s  T T 

x’ Y 

5 



and the local round-off e r r o r s  R R In the following, such assump- 

tions for these e r r o r s  will be  discussed. 
x’ y’ 

9. As for the truncation e r ro r ,  we restrict ourselves t o  the leading t e r m  
of this e r ro r .  In our earlier reports [ I], [ 21, we already determined 
the leading truncation e r r o r  te rm for RUNGE-KUTTA formulas up to 
the eighth order.  This leading te rm of the local truncation e r r o r  was 
used in these earlier reports for  the stepsize control only. We introduce 
this termnow also in (10) for T and T . 

X Y 
I O .  An accurate determination of the round-off e r r o r s  R and R in ( I O )  

X Y 
is almost impossible. We therefore resort  to a somewhat crude but 
easily obtainable approximation. In ( 3 )  , the quantities xo and 
h( cofo + cifi + c2f2 + . . . ) a r e  in general of different order of magnitude, 
the latter expression being a small increment of x,. Therefore, when 
performing their addition in ( 3 ) ,  the electronic computer has to shift a 
certain part  of the smaller number h(cofo + cifi + c2f2 + . . . ) out of i ts  
range. The shifted-out par t  of the smaller number is lost for  the 
computation. We now consider this shifted-out par t  a s  an approximation 
for  the round-off e r r o r  R in ( 1 0 ) .  Naturally, the functions 

fo,fi,f2, . . . in ( 2 )  a r e  also affeeted by round-off e r r o r s .  However, 
when these functions enter equation ( 3 )  , their round-off e r r o r s  a re  
multiplied by the small  cpantity h and may therefore be  neglected, 
compared with the round-off e r ro r  resulting from the addition of xo 
and h(cofo + clfi + c2f2 + . . . ) . 

X 

In the same way, an approximate value for the round-off e r r o r  R 

be obtained from the formula for y that corresponds to ( 3 ) .  

can 
Y 

11. Introducing the approximate values T , T and R R , the partial 
X Y  x’ Y 

derivatives (E)o, (E)o, (z)o, ($)o and the total e r r o r s  (..> 0’ 
at the beginning of the current integration step into the equations 

( l o ) ,  the total e r r o r s  E E at the end of the current integration step 

are easily obtained by a few multiplications and additions. 

k Y )  0 

xy Y 

6 



We evaluated equations ( 1 0 )  three times: 

( u  = 0,1,2). 

For u = 1 we took proper care of the round-off e r ro r s  R R , thereby 

obtaining approximations E (I) , E ( i, for the true e r r o r s .  For 

u = 0 (disregarding the round-off e r ro r s )  and for  u = 2 (doubling the 

( O )  and E 

x' Y 

X Y 

(2)  
x '  Y 

round-off e r ro r s )  we established "bounds" ex ( O ) ,  E 

E (2)  for the true e r ro r s .  

Compensating for these e r r o r s  E ( '), E ( '), we obtained from x,  y 
Y 

X Y 

for u = i approximations x( i), y(  i, for the true values x T' YT' For  

(2)  u = 0 and u = 2, the compensation yields bounds x(O), y(O) and x , 
y(') for x and y The values x , y  were the results of the RUNGE- 

KUTTA integration (2) , ( 3 )  of our problem without any e r r o r  compensa- 
tion. 

T T '  

Figure i illustrates the prccedure for the computation of the e r r o r  spread 
in x for the first two integration steps. 

12. As already stated in the Introduction, we cannot always expect strict 
bounds using such an extremely simplified approximation procedure for  
the round-off e r rors .  However, the examples of Section III show that by 
using in (11) the correct  values of the partial derivatives and proper 
approximations for the local truncation e r ro r s ,  realistic and reasonably 
close e r r o r  bounds are obtainable by our procedure for the round-off 
e r r o r s .  

7 



In some problems, it might occur that our f'boundsff are too tight. In 

such cases,  the values x"), x( i), and x ( ~ )  (o r  the corresponding 
values of y) would become practically equal, but not necessarily equal 
to the true value, x 

in ( ii) 
spread of the bounds. 

Better bounds might then be obtained by replacing T '  
v = 0 ,  1, 2 by v = -i, i, 3 o r  similar values to effect a wider 

13. If the partial derivatives in ( 10) assume large values during the numerical 
integration of the problem ( i) , the e r r o r  can propagate heavily, even if 
the local truncation e r r o r s  T and T a r e  kept very small by a 

X Y 
sufficiently small  integration stepsize. To slow down such1 an undesirably 
large error spread, we introduce an additional test for the stepsize by 

requiring that the products I ( - ) o l h ,  I @)olh, [ ($01, and 

1 (g)o I h should not exceed a pre-given value, If they exceed that 

value, the stepsize h will be  halved sufficiently often until all products 
stay below the pre-given value. 

By a proper choice of this pre-given test  value, we can regulate the e r r o r  
spread to a certain extent. However, one should keep in mind that a very 
small  test value might lead to very small integration stepsizes. Thereby, 
a heavy buildup of the round-off e r r o r s  might occhr, resulting in 
unrealistically large e r r o r  bounds. 

SECTION 1 1 .  THE ERROR EQUATIONS, BASED ON TWO 
INTEGRATION PROCEDURES PER INTEGRATION STEP 

14. Although the method of Section I, if properly applied, will lead to rather 
accurate values for the e r r o r s  and reasonably close e r r o r  bounds, the 
method has the disadvantage of requiring the computation of the partial 

derivatives , , - * * . These partial derivatives might turn 

out to be  lengthy and cumbersome expressions. Furthermore, for 
extensive systems of differential equations there will be  a large number 
of such partial derivatives (n2 partial derivatives for a system of n 
differential equations) . 

8 



15. To avoid these inconveniences in  the study of the e r r o r  propagation, one 
might rather resor t  to methods which do not involve partial derivatives. 
Such methods can be  established if for  each step the numerical integration 
is performed twice by means of two different RUNGE-KUTTA formulas. 
These two RUNGE-KUTTA formulas are chosen in such a way that their 
leading terms of the local truncation e r r o r  are equal but of opposite sign. 

Obviously, the arithmetic mean of these two RUNGE -KUTTA formulas 
represents a RUNGE-KUTTA formula of order n+l, if the two original 
RUNGE-KUTTA formulas a r e  of order  n. Considering this arithmetic 
mean formula as an approximation of the true values, the difference in 
the values of the original two formulas can be regarded as an indicator 
for the spread of the truncation e r r o r .  

In the literature, two such RUNGE-KUTTA formulas a r e  called two-sided 
or bilateral RUNGE-KUTTA formulas. 

Since such two-sided RUNGE-KUTTA formulas do not consider the round- 
off e r ro r s ,  these must be kept negligible. This means, the e r r o r  propaga- 
tion obtained from two-sided RUNGE -KUTTA formulas will be  reliable 
only a s  long a s  the truncation e r r o r s  a r e  dominant compared with the 
round-off e r r o r s .  

Because of the dominance of the truncation e r ro r s ,  the e r r o r  bounds of 
two-sided RUNGE-KUTTA formulas will not b e  as close as the bounds 
of the procedure described in Section’I. This is not surprising, since the 
truncation e r r o r s  can be practically eliminated in the procedure of 
Section I. 

16. Two-sided RUNGE-KUTTA formulas of low order have been known a 
long time. For example, the modified EULER-CAUCHY formula 

I 
X =  Xo + - 2 h (f (t0,xO) + f [to + h, x0 + hf(to,x,,)]} , ( 12) 

which represents a RUNGE-KUTTA formula of the second order,  can be 
considered as the arithmetic mean of the two first-order RUNGE-KUTTA 
formulas : 

9 

I: 



17 I 

10 

X (I) = x, + hf(to,xo) 

x ( ~ )  = x,, + hf [ to  + h, x, + hf ( t0 ,q ) I  

TAYLOR-expansion of the right-hand sides o (13) leaL; to: 

Since the last terms on the right-hand sides of (14 )  represent the 
leading te rms  of the local truncation e r r o r  of formulas ( 13) , these 
formulas a r e  indeed two-sided RUNGE'-KUTTA formulas of the first 
order.  

In the case of formulas (12) and ( 13) , the conditions that (13) always 
yields s t r ic t  bounds for  the solution ( 12) have been established by 
S. GORN and R. MOORE [ 3 ] .  These conditions a r e  also quoted in 
another paper by S. GORN ( [4] , p . 76 ) . They involve the first-  and 
second-order partial derivatives f f f and f 

More recently, two-sided RUNGE-KUTTA formulas of the second- and 
third-order were published by A. D. GORBUNOV and YU. A. SHAKHOV 
[51 Y [ G I .  

t '  tt' tx xx' 

Two-sided RUNGE-KUTTA formulas, up to the eighth order,  can be  
obtained easily from the RUNGE-KUTTA formulas of our reports [ I] , 
[ 2 ] ,  We have only to recall that the formulas of these reports represent 
pairs of RUNGE-KUTTA formulas of the order n and n+ I ( I 5 n 2 8) . 
The formula of the order n+ I is obtained from the formula of the order 
n by adding one o r  two more evaluations of the differential equations and 
changing the weight factors c of the nth-order formula to the weight 

factors c of the (n+ I) st-order formula. 
K 

A 

K 



Knowing two such formulas of the nth- and the 
immediately derive from these formulas two two-sided RUNGE -KUTTA 
formulas of the nth-order by putting 

(n+l)st-order, one can 

However, it is not even necessary to compute the coefficients (15) , since 
we can operate our RUNGE-KUTTA formulas of [ I] , [ 21 as  two-sided 
RUNGE -KUTTA formulas in the following way: Starting from the initial 

values (to ,xo( I), . . . ) , we compute one step by our nth-order RUNGE- 

KUTTA formula applying the leading te rm TE of the local truncation 
e r r o r  for the stepsize control. 

t e rm TE, thereby obtaining the values x , . . . for one of our two- 
sided RUNGE-KUTTA formulas. Next, we start from the initial values 

(to, xo(2)  , . . . ) and compute one step with the same stepsize as  for 

x( 
RUNGE -KUTTA formula. 

From the result, we subtract twice the 
( 1) 

, thereby obtaining the values x ( ~ )  for our second two-sided 

In Figure 2 the procedure is illustrated for the first two integration steps. 
The final values x a r e  then approximated by 

and the propagated e r ro r s  by 

Corresponding formulas hold for y, E 

variables. 
and for  any further dependent 

Y 

18. For  the convenience of the reader,  we have listed as Appendix to  this 
report our RUNGE-KTJTTA coefficients for RKl( 2) , RK2(3) , . . . , 
RK7( 8) from [ 21, [ 13 , including the leading te rm TE of the local 

I 1  
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truncation e r ror .  However, formulas RKI( 2) and RK2( 3) in [ 21 
have been changed to formulas more suitable for the study of e r r o r  
propagation. For the somewhat lengthy table of coefficients for RK8( 9) 
we refer to our paper [ I]. 

19. While the local truncation e r r o r  can be  checked by the te rm TE of the 
Appendix, we have control of the e r r o r  propagation during the current 
integration step by checking I E - , I eY - (Ey)ol , etc . ,  since 

X 
these expressions represent the e r r o r  growth during the current integra- 
tion step (the suffix 0 indicating the values at the beginning of the 
current step) . By requiring that the expressions 

, etc. remain smaller than a pre-given small  quantity and 

by reducing the stepsize h until these condition a re  met, we have, 
similar as in the procedure of Section I, a certain control of the e r r o r  
propagation. 

I - ex) 01 ’ 
ley - ( ty)ol  

20. To get the e r r o r  propagation of two-sided RUNGE-KUTTA formulas 
properly started,  the local truncation e r r o r  has to be dominant from the 
beginning of the integration. Therefore, in the beginning, we relax the 
tolerance for the leading te rm of the local truncation e r r o r .  Af te r  the 
propagated e r r o r  has grown to a certain magnitude, we continue the com- 
putation by using a sharper (smaller)  tolerance. In this way, for  the 
examples of Section 111, we could keep the e r r o r  bounds of our two-sided 
RUNGE -KUTTA formulas relatively close (about three to four times a s  
large a s  the bounds for the procedure of Section I ) .  

SECTION I 1 1 .  EXAMPLES FOR THE ERROR PROPAGATION 

21. We apply the methods of Sections I and I1 to the following examples: 

Problem I: 

12 



For the initial values 

( 19) t o  = 0, xo = I, yo = 0 , 

the differential equations (18) have the following solution in closed 
form: 

Figures 3 and 4 show the shape of the ( t rue)  solution (20) . Because of 
the argument t2 in (20) , the frequency of the oscillations increases rapidly 
with t.  The problem clearly requires a continuous stepsize control a s  
provided by our RUNGE-KUTTA formulas. We integrated problem ( 18), 
(19) from t = 0 to t = 5 .  

Problem 11 - Restricted Problem of Three Bodies; (see V. SZEBEHELY 
[ 71 or  other textbooks of celestial mechanics) : 

In the rotating coordinate system, the problem leads to the well-known 
differential equations: 

- u -  Y 

13 
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22. 

Here, x and y represent the coordinates of a moving particle of 
negligible weight ( spaceship) with respect to the barycentric system of 
the two fixed bodies (earth, moon). In this system, the earth has the 
constant coordinates x = - p,  yE = 0, and the moon has the constant 

coordinates xM = p' = I - p,  yM = 0.  
E 

We solved problem (21) for two different sets of initial values: 

( s'o ) (22) a .  t o = O ,  x o = l . 1 5 ,  y o = O ,  % = O ,  y o = - 0 . 8 7  p = - '  

and 

Figures 10 and 15 show the shape of the orbit for the initial conditions 
(22) o r  ( 2 3 ) ,  respectively. The marks along the orbit represent the 
time scale,  The f i rs t  orbit was computed from t = 0 to t = 6, the 
second orbit from t = 0 to t = 25. 

Since no solution in closed form for problem (21) , (22) o r  problem 
( 2  I) , (23) is known, we substituted for  the true solution an orbit 
obtained by carrying more than 20 decimal digits on the computer. 
numerical solution of our problems was obtained by carrying 16 digits 

The 

(IBM-7094). 

Since, for  some par ts  of its orbit, the spaceship approaches earth o r  
moon relatively closely but for other par ts  is carr ied f a r  away from these 
bodies, we again need a continuous stepsize control to take proper care 
of all parts of the orbit. 

Figures 5 through 9,  ii through 14, and 16 and 17 show our results for  
the propagated e r r o r s  Ax of Problems I, IIa, and Ilk. The e r ro r s .  Ay 
look similar,  especially in Problem I, and were therefore omitted. 

2. This part  of the computations was carr ied out by M r .  F. R.  Calhoun 
from the Computer Sciences Corporation (CSC) who also developed the 
necessary 30- and 40-digit packages for the IBM-7094 computer. 

14 



On these graphs we used a few abbreviated expressions that should be 
explained now: 

a. - TOL stands for tolerance. The products TOL * 1 %  I ,  
TOL 
truncation e r ro r s  (xo,yo, . . . being the initial values in 
x ,y ,  . . . for the current s tep) .  The integration stepsize 
h(=  dt) was selected in such a manner that the local truncation 
e r r o r s  I TE I , I TE I ,  etc. would not exceed the above products. 

b .  TMPDDT stands for test value for the (absolute) maximum of 
the partial derivatives times dt. This test value serves  as a 
control for  the e r r o r  propagation; (see No. 13) . 

I yo I ,  etc. were used as tolerances for the local 

X Y 

c. TEXY stands for  test value for the (accumulated) e r r o r  in x 
o r  y. A s  soon a s  both of these e r r o r s  in absolute value 
exceed TEXY, we switched over from a relaxed tolerance 
(TOL = 0. I IO-” )  to a sharper tolerance (TOL = 0 .  1 . IO-i6) . 

d .  TOLEP stands for tolerance in e r r o r  propagation. A s  soon a s  
the maximum of I E - (Ex)() 1 9  I CY - (Ey)ol 9 etc. exceeds 

the test value TOLEP, the stepsize h(= dt) is halved ( i f  
necessary repeatedly halved) to prevent a too fast increase in 
e r r o r  propagation; (see No. 19) . 

In all three problems, we printed our results in equidistant time intervals. 

In Problems I and IIa we printed for  At = - , in  Problem I& for 

At = - . To obtain results for such equidistant time intervals, we had 

to adjust our stepsize h(=  dt) when overshooting the time interval. In 
the graphs, the results for the printed time intervals were connected by 
straight l ines.  

1 
8 I 

2 

23. For Problem I, the numerical integration was performed by our RUNGE- 
KUTTA formulas RK5( 6) and RK7( 8) . 

Figures 5, 6 ,  and 7 show the results based on the e r r o r  propagation for- 
mulas of Section I (one integration procedure per integration step) . 

15 



(v) (1) The curves v = 0,2 or I/ = -1, 3 represent the deviations x - x , 
where x( i, stands for the x-value corrected for the local truncation 
and round-off e r ro r ;  ( see No. 11 arid No. 12) . The third curve on these 
graphs, wh.ich is mostly close to the t-axis represents the deviation 

x - x( i, between the true solution and x( i, . Naturally, this deviation 

would be  zero if the equations for the e r r o r  propagation would give 
results which are completely correct .  

T 

We see from Fi re 5 that for  RK5(6) the e r r o r  bounds increase from 
0 to 4000 This means that the 13th place behind 
the decimal point could be wrong by up to four units. The real  e r ro r ,  
represented by the third curve in Figure 5, is somewhat smaller than 
our bounds, namely of the order 100 - 10 - 0. 0 1  * We obtain 
safe e r ro r  bounds in this case.  Figure 6 shows the e r r o r  behavior for  
RK7( 8) . Here  the e r r o r  bounds a r e  smaller,  since the integration is 
performed in considerably fewer steps.  The e r r o r  bounds donot exceed 
600 * 10 - 0.6 * However, because of the larger permissible 

stepsize, the curve x - x( 

It almost reaches the peaks of the e r r o r  bound curves.  

10-le 0.4 - 

-16 - 

-16 - 

deviates more from zero than in. Figure 5. 
T 

We recomputed the e r r o r  behavior for  RK7( 8) using for the e r r o r  
bounds v = -1 and v = 3. The results are plotted in Figure 7.  Now the 

curve x - x(') fits better between the e r r o r  bounds which now increase T 
up to 1200 = 0 .  12 - 10 . Again, we obtain safe e r r o r  bounds in 
this case.  

- 12 

Figures 8 and 9 show our results based on the e r r o r  propagation formulas 
of Section I1 (two integration procedures pe r  integration step) . The 

curves represent x(I) - x and x ( ~ )  - x with x = - [x' i 
2 

+ x'~ ' ]  and 

as third curve, close to  the t-axis, x - x. The e r r o r  bounds grow up 

to 20 000 = 0.2 - 10 for our formula RK5( 6) and up to 
6000 - = 0 . 6  - 10 for our formula RK7( 8). The actual e r ro r s  
x - x a r e  smaller than these e r ro r  bounds, s o  that our bounds, again, 

can be considered as safe. 

T - 11 
- 12 

T 

16 



Comparing Figures 5, 6, and 7 with Figures 8 and 9, it is very evident 
that the method of Section I leads, a s  expected, to closer error bounds 
than the method of Section II. Al l  Figures show that our e r r o r  bounds 
oscillate with approximately the same frequency a s  the solution itself 
(F ig .  3 ) .  

24. The numerical integration for  the orbit of Problem IIa, again, was 
performed by our RUNGE -KUTTA formulas RK5( 6) and RK7( 8) . 
Figures I1 to 14 show our results for the e r r o r  propagation. After the 
explanations of No. 23, our results need hardly any further interpretation. 
It is remarkable how the e r ro r  bounds grow when the spaceship comes 
close to the earth ( t  M I. 5 and t M 4.875) . Again, our formulas lead 
to safe e r r o r  bounds, with larger  bounds for  RK5( 6) than for RK7( 8) , 
and the e r r o r  bounds for the method of Section I a r e  closer than those 
for  the method of Section II. 

25. Finally, we integrated Problem IIb by our RUNGE -KUTTA formula 
RK7( 8) . Because of the longer time range to be covered in this problem 
and because of the more complicated shape of the orbit - the spaceship 
approaches the earth five t imes - our lower-order formula RK5( 6) 
proved not to be very suitable for this problem. Figures 16 and 17 
show the results for our formula BK7( 8 ) .  Especially in Figure 17, we 
can easily recognize the increase in the e r r o r  bounds when the spaceship 
approaches the earth ( t  2, t X 6.5,  t 12.5, t M 17.5, and 
t 22.5) .  

26. Although there is no guarantee that the methods of Sections I and I1 yield 
strict bounds that bracket the correct  solution, we obtained reasonable 
bounds for the problems of this Section. The bounds bracket the correct  
solution almost everywhere, and they are also reasonably close to the 
correct solution. It might require some experience to find the proper 
values for the test functions involved (TMPDDT o r  TEXY, TOLEP) , 
especially in problems (such a s  our Problems Ea and IIb) in which the 
differential equations contain singularities. In general, it will be  
advisable to use high-order RUNGE-KUTTA formulas, since their 
application will keep the propagated e r r o r s  small. Because such high- 
order  formulas require a relatively small  number of integration steps, 
the e r r o r s  have no real chance to propagate heavily. 

George C. Marshall Space Flight Center 
National Aeronautics and Space Administration 

Marshall Space Flight Center, Alabama 35812, May 26, 1970 



Figure I. Error  spread for methods using one integration procedure per  
integration step. 

t h h 
0 

Figure 2. Er ror  spread for  methods using two integration procedures per  
integration step. 
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Figure 3 .  Solution x = cos (t2) for Problem I. 
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Figure 4. Solution y = * sin (t2) for Problem I. T 
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Figure 5 .  Propagated e r ro r  Ax for Problem I, using RK5( 6) and one integration procedure 
per step ( v  = 0,1,2). 



TOL = 0.1 TMPDD’I 1/8 
999 STEPS, COMPUTING TIME1 0.17 MIN 

Figure 6. Propagated e r ro r  hx for  Problem I, using RK7( 8) and one integration procedure 
per  step (v = 0,1,2). 



Figure 7. Propagated e r ror  Ax for  Problem I, using RK7( 8) and one integration procedure 
per step ( Y = -i, i, 3 ) .  
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Figure 8.  Propagated e r r o r  Ax for  Problem I, using RK5( 6) and two integration procedures 
per  step. 



Figure 9 .  Propagated e r ro r  Ax for Problem I, using RK7( 8) and two integration procedures 
per step. 



Figure 10. Restricted problem of three bodies: orbit for  Problem IIa. 



0 

-2001r.10- 16 

-4000 41  0 - l6 

I l l  

Figure 11. Propagated e r ro r  Ax for Problem IIa, using RK5( 6) and one integration procedure 
per step ( v  = 0,1,2). 



2094 STEPS, COMPUTING TIME: 1.14 MIN 

----- -7- 

Figure 12. Propagated e r r o r  Ax for Problem IIa, using RK7( 8) and one integration procedure 
per step ( v  = -1, I, 3 ) .  



Figure 13. Propagated e r ror  Ax for Problem IIa, using RK5( 6) and two integration procedures 
per step. 
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Figure 14. Propagated e r ro r  Ax for Problem IIa, using RK7( 8) and two integration procedures 
per  step. 



Figure 15. Restricted problem of three bodies: orbit for Problem 1%. 
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Figure 16. Propagated e r r o r  Ax for Problem IIb, using RK7( 8) and one integration procedure 
per step ( v =  -1, 1 , 3 ) .  
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Figure 17. Propagated e r ro r  Ax for Problem IIb, using RK7( 8) and two integration procedures 
per step.  



APPENDIX 

COEFFI ClENTS FOR RUNGE-KUTTA FORMULAS 
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